
Volumen berechnen - Modellierung zusammengesetzter Körper

Wie viel Gramm Wachs benötigt es, um die Wachsfigur von Manuel Neuer zu gießen?

- Gib deine Schätzung an:
- Zerlege den skizzierten Körper in Teilkörper, die den geometrischen Grundkörpern (Kugel, Zylinder etc.) ähneln.
- Nutze die Tippkarte mit den gegebenen Größen. Schätze fehlende Körpergrößen eigenständig ab.

Tippkarte

- Dichte von Wachs: 0,96 $\frac{g}{cm^3}$

- Neuers Körpergröße: 193 cm

- Breite der Brust: 39 cm

- Armlänge: 85 cm

- Armumfang: 35,6 cm

Antwort:

Mathematik Seite 1/2

Lösungsweg:

Zunächst sind die Schätzungen so gewählt, sodass der Körper eine Gesamthöhe von 193 cm hat.

Körperteil	geometrischer Grundkörper	geschätze Hilfsgröße
Kopf	Kugel	r=12cm
Hals	gerader Kreiszylinder	r=5cm, h=9cm
Rumpf	Quader	$a_{Breite}=39cm, b_{H\ddot{o}he}=65cm,$
		$c_{Tiefe}=20cm$
Arm	gerader Kreiszylinder	$a_{Arml\"{a}nge}=85cm, r=4cm$
Bein	gerader Kreiszylinder	$b_{Beinl\"{a}nge}=95cm, r=6cm$

Körperteil	Volumen
Kopf	$V_{Kopf}=rac{4}{3}\cdot\pi\cdot r^3=rac{4}{3}\cdot\pi\cdot 12^3pprox 7238{,}23cm^3$
Hals	$V_{Hals} = \pi \cdot r^2 \cdot h = \pi \cdot 5^2 \cdot 9 pprox 706,86 cm^3$
Rumpf	$V_{Rumpf} = a \cdot b \cdot c = 39 \cdot 65 \cdot 20 pprox 50700 cm^3$
Arm	$V_{Arm} = \pi \cdot r^2 \cdot a = \pi \cdot 4^2 \cdot 85 pprox 4272{,}57cm^3$
Bein	$V_{Bein} = \pi \cdot r^2 \cdot b = \pi \cdot 6^2 \cdot 95 pprox 10744,25 cm^3$

$$V_{K\ddot{o}rper}=V_{Kopf}+V_{Hals}+V_{Rumpf}+V_{Arm}+V_{Bein}=88678,73cm^3$$
 $M=V_{K\ddot{o}rper}\cdot 0,96rac{g}{cm^3}=85131,58gpprox85,13kg$

Mathematik Seite 2/2