Die lokale Linearität

- ① Scanne den untenstehenden QR-Code ein (oder gib den Link im Browser ein). Du siehst dann den Graphen der Funktion $f(x)=\frac{1}{2}x^3-x$ in Geogebra. Mithilfe der Lupe kannst du einen kleinen Ausschnitt im Koordinatensystem näher betrachten.
 - a) **Vergrößere** den Ausschnitt der Funktion beim Punkt A über den Schieberegler für h **immer weiter. Beschreibe**, was du dabei feststellst.
 - b) **Bestimme** die mittleren Anstiege zwischen den Punkten A_1 und A_2 verschiedener Ausschnitte und **ergänze** die untenstehende Tabelle.
 - c) **Vergleiche** die Ergebnisse des Differenzenquotienten aus der Tabelle. **Beschreibe** deine Beobachtung.
 - d) Zeichne die Funktion $f(x)=sin(x)+2\cdot sin(3x-4)$ in Geogebra. Stelle Vermutungen an, was passiert, wenn du hier ebenfalls in beliebige Ausschnitte der Funktion hineinzoomst. Notiere deine Vermutung und **überprüfe** sie danach.

https://www.geogebr a.org/m/v9qnxtnj

Hinweis

h ist der jeweilige Abstand in x-Richtung der Punkte A_1 und A_2 zum festen Punkt A.

x_1	x_2	$f(x_1)$	$f(x_2)$	$m=rac{f(x_2)-f(x_1)}{x_2-x_1}$

Mathematik Seite 1/3

Tangenten und Sekanten

- \odot Scanne den untenstehenden QR-Code ein (oder gib den Link im Browser ein). Du siehst dann eine Sekante, die an den Punkt P(1|1) der Funktion $f(x)=0.5x^2+0.5$ angelegt wurde sowie das zugehörige Steigungsdreieck und dessen Anstieg.
 - a) **Verkleinere** das Intervall des Steigungsdreiecks mithilfe des Schieberegler für Δx **immer weiter** und beobachte, was mit der Sekante passiert. **Beschreibe**, was du dabei feststellst, gehe dabei auch auf folgende Fragen ein:
 - Was passiert mit der Sekante für $\Delta x=0$?
 - In wie vielen Punkten berührt die Sekante den Graphen in diesem Fall?
 - Was wird aus dem Differenzenquotient?
 - Welche geometrische/ inhaltliche Bedeutung hat die Sekante bzw. der Differenzenquotient im Fall $\Delta x=0$?

https://t1p.de /anx89

b) Der Differenzenquotient geht für $h \to 0$ in den Differentialquotienten $\lim_{h \to 0} \frac{f^{(x_0+h)-f(x_0)}}{h} \text{ "uber. Der Differentialquotient entspricht der Ableitung } f'(x_0) \text{ der Funktion } f \text{ im Punkt } x_0.$

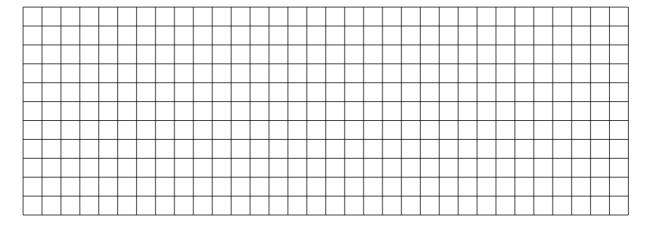
Berechne die Differentialquotienten für folgende Stellen x_0 und stelle Vermutungen an, welche Rückschlüsse sich damit über die Monotonie der Funktion $f(x)=4x^3-6x^2$ ziehen lassen:

$$x_0 = 0$$

$$x_0=0,5$$

$$x_0 = 1$$

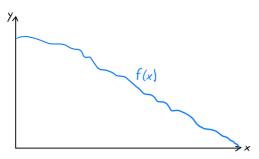
$$x_0 = 1,5$$



Mathematik Seite 2/3

Die inhaltliche Interpretation der Ableitung

- $\ \ \,$ a) K=f(A) beschreibt die Kosten K in Euro zum Bau eines Hauses mit A m^3 umbautem Raum. **Erkläre** die inhaltliche Bedeutung der Ableitung f'(A).
 - b) Die Förderungen von T Tonnen Kupfer verursachen in einer Mine Kosten (in Euro) von K=f(T). **Gib** die Bedeutung von f'(2000)=100 an.
 - c) f(x) ist die Höhe (ü.N.N.) des Elbufers in x km Entfernung von der Quelle. **Gib begründet** die Einheit und das Vorzeichen von f'(x) **an.**



d) *Ein ICE fährt die 360 km (= f(t)) von Leipzig nach München in $t=3h\ 10min$ und macht dabei vier Zwischenstopps in Erfurt, Bamberg, Erlangen und Nürnberg. **Zeichne** einen Graphen für f(t).

Gib die Bedeutung und eine sinnvolle Einheit von f'(t=20min)=230 an. **Erläutere** die physikalische Bedeutung von f''(t).

- $oldsymbol{4}$ **Zeichne** in die Abbildung die Punkte A bis H in den Graphen von f ein, die den folgenden Anforderungen genügen:
 - im Punkt A ist der Funktionswert positiv
 - im Punkt B ist der Funktionswert negativ
 - im Punkt C ist der Funktionswert am kleinsten
 - im Punkt D ist die Ableitung negativ
 - im Punkt E ist die Ableitung positiv
 - im Punkt F ist die Ableitung Null
 - in den (verschiedenen) Punkten G und H ist die Ableitung gleich



Mathematik Seite 3/3