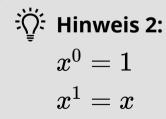
Die Potenzregel

- 1 Berechnen Sie die Ableitung der folgenden Funktionen
 - f(x) = x
 - $f(x) = x^2$
- $egin{array}{ll} \end{array}$ Beschreiben Sie welches Muster erkennbar ist. Bestimmen Sie die Ableitung der Funktion $f(x)=x^n$

Hinweis 1:

Die Ableitungen von $g(x)=x^3$ und $h(x)=x^4$ lauten: $g'(x)=3x^2$ und $h'(x)=4x^3$



Die Summenregel

Sind u und v differenzierbare Funktionen, dann gilt die Summenregel.

$$f(x) = u(x) + v(x) \implies f'(x) = u'(x) + v'(x)$$

- 1 Beweisen Sie die oben stehende Aussage, indem Sie:
 - 1) den Differentialquotienten von f(x) bilden
 - 2) den Bruch im Limes in 2 sinnvolle Teile zerlegen
 - 3) den Limes aufspalten, sodass Sie $u^\prime(x)$ und $v^\prime(x)$ erhalten

$$\lim_{h o 0} f(x) + g(x) \implies \lim_{h o 0} f(x) + \lim_{h o 0} g(x)$$

Die Faktorregel

Ist u eine differenzierbare Funktion, dann gilt die Faktorregel.

$$f(x) = c \cdot u(x), c \in \mathbb{R} \implies f'(x) = c \cdot u'(x)$$

- 1 Begründen Sie die Gültigkeit der obigen Aussage, indem Sie...
 - 1) den Differentialquotienten von f(x) bilden
 - 2) geeignet faktorisieren
 - 3) $u^{\prime}(x)$ und die Konstante c erhalten

$$\lim_{h o 0}[c\cdot f(x)]=c\cdot \lim_{h o 0}f(x)$$