Ein Test zum Einstieg

- 1) Wie gehen die Zahlenfolgen weiter?
 - Ergänze jeweils die folgenden drei Zahlen.
- 2 Beschreibe jeweils das Bildungsgesetz der Zahlenfolgen in Worten.
- 3 Gib jeweils falls möglich eine Formel an, mit der sich die einzelnen Folgenglieder direkt berechnen lassen.

Stelle deine Ergebnisse jeweils wie folgt mit Hilfe einer Tabelle dar.

x =Nummer des Folgenglieds	0	1	2	3	4	 х
y = Folgenglied	0	2	4	6	8	 y =2x

Tab. 2 — Zahlenfolgen durch Formeln beschreiben

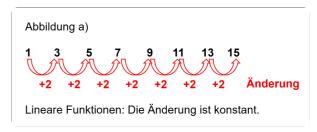
a)	1	3	5	7	9
b)	0	2	4	6	8
c)	0	2	6	12	20
d)	0	1	4	9	16
e)	2	3	5	7	11
f)	8	5	2	-1	-4
g)	5	10	20	40	80
h)	0	1	3	6	10

a) 1, 3, 5, 7, 9, 11, 13, 15, ungerade Zahlen $\rightarrow y = 2x + 1$	b) 0, 2, 4, 6, 8, 10, 12, 14, gerade Zahlen → y = 2x
c) 0, 2, 6, 12, 20, 30, 42, 56, > Vgl. Abbildung c)	d) 0, 1, 4, 9, 16, 25, 36, 49, Quadratzahlen $\rightarrow y = x^2$
e) 2, 3, 5, 7, 11, 13, 17, 19, Primzahlen → keine Formel	f) 8, 5, 2, -1, -4, -7, -10, -13, ➤ Anfangswert 8 ➤ In jedem Schritt wird 3 subtrahiert → y = 8 - x · 3
g) 5, 10, 20, 40, 80, 160, 320, 640, ➤ Anfangswert 5 ➤ In jedem Schritt wird mit 2 multipliziert → y = 5 · 2 ^x	h) 0, 1, 3, 6, 10, 15, 21, 28, > Vgl. Abbildung h)
i) $0, 1, 2, 3, 4, 5, 6, 7,$ \triangleright IN \rightarrow $y = x$	j) 1, 2, 4, 8, 16, 32, 64, 128, ➤ Zweierpotenzen → y = 2 ^x
k) 2, 7, 12, 17, 22, 27, 32, 37, ➤ Anfangswert 2 ➤ In jedem Schritt wird 5 addiert → y = 2 + x · 5	I) 0, 1, 8, 27, 64, 125, 216, 343, • Kubikzahlen $\rightarrow y = x^3$

Lösungsvorschläge

Untersuchung des Änderungsverhalten bei Zahlenfolgen

- (4) Suche aus den Folgen der Aufgabe 1 diejenigen heraus, bei denen die Änderung von einem Folgenglied zum nächsten konstant ist und ergänze die fehlenden Einträge in der nachfolgenden Tabelle.
 - b = Anfangswert *m* = *konstante Änderung* T = Term

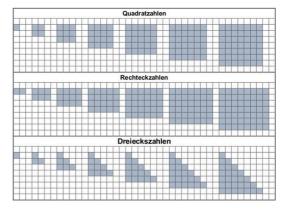

Fol ge	х	0	1	2	3	4	 b	m	y=T(x)
a)	у	1	3	5	7	9	 1	2	y=1+x*2
All ge									
m									
ein							 		

Tab. 3 — Änderungsverhalten bei linearen Funktionen mit Anfangswert b und konstanter Änderungsrate m

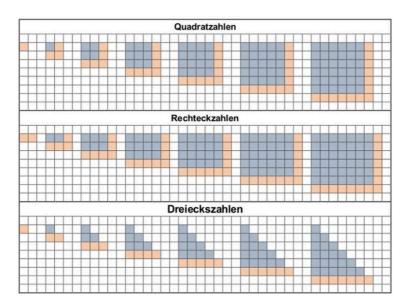
- (5) Überprüfe deine Ergebnisse mit Hilfe von GeoGebra.
 - Zeichne auch die Graphen

Zuordnungen der Form y = mx + b heißen lineare Funktionen.

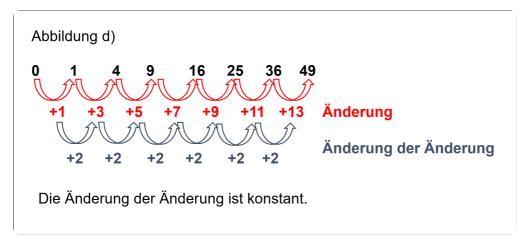
Bei linearen Funktionen gilt: Der Anfangswert ist b. Wenn sich x um 1 ändert, dann ändert sich y um m.


Änderungsverhalten linearer Funktionen

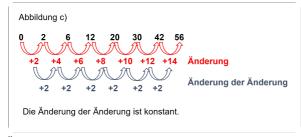
6 Untersuche das Änderungsverhalten der übrigen Folgen und beschreibe es möglichst genau.

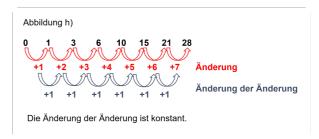

Figurierte Zaheln

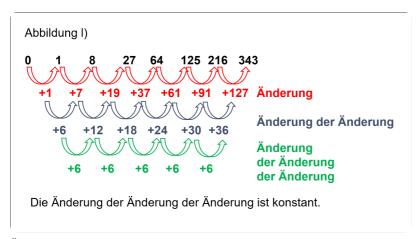
Die folgenden Namen und Darstellungen für die Zahlenfolgen d), c) und h) kennst du schon aus Klasse 5.



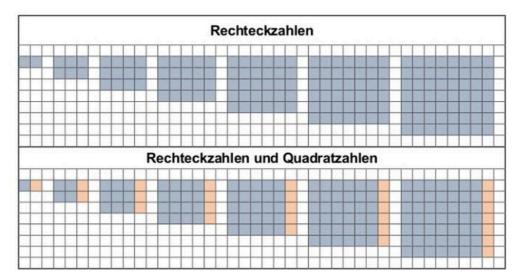
Figurierte Zahlen


Lösungsvorschlag

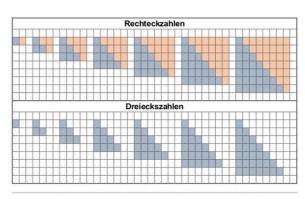

Änderungsverhalten bei figurierten Zahlen


Änderungsverhalten bei Quadratzahlen

Änderungsverhalten bei Rechteckszahlen

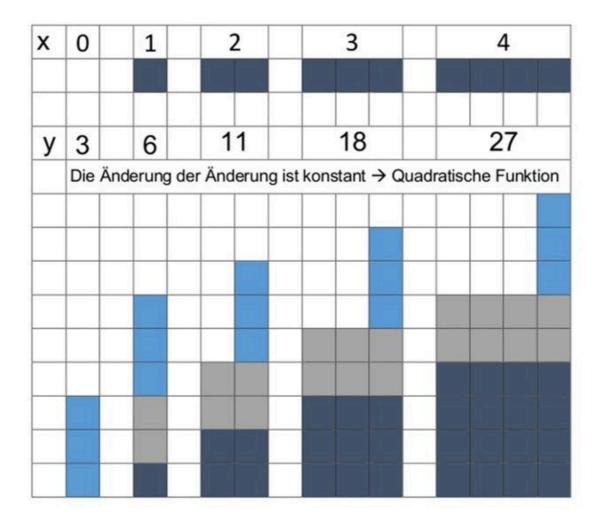


Änderungsverhalten bei Dreieckszahlen


Änderungsverhalten bei Kubikzahlen

- (7) Finde mit Hilfe der folgenden Abbildung zwei verschiedene Formeln zur direkten Berechnung der einzelnen Rechteckszahlen.
 - Zeige, dass die Formeln gleichwertig sind.

Formeln zur Berechnung von Rechteckszahlen finden


8 Finde mit Hilfe der folgenden Abbildung eine Formel zur Berechnung der einzelnen Dreieckszahlen.

Rechteckzahlen und Dreieckszahlen

Bestimmung der Gleichung einer quadratischen Funktion

② Zusatzaufgabe Bestimme mit Hilfe der folgenden Abbildung die Gleichung einer "quadratischen Funktion"

Formel einer quadratischen Funktion bestimmen