1	lpha = 1°,	δ =	179°,	γ =	1°
---	------------	------------	-------	-----	----

$$\gamma = 77^{\circ}$$
, $\delta = 44^{\circ}$, $\epsilon = 59^{\circ}$

(3) Welche der Aussagen ist wahr? Begründe!

		wahr	falsch
1)	Ein Dreieck kann zwei rechte Winkel haben.	0	\circ
2)	Bei einem spitzwinkligen Dreieck sind alle Winkel kleiner als 90°.	0	0
3)	Ein Dreieck kann einen überstumpfen Winkel haben.	0	0
4)	Die Summe der Innenwinkel im Dreieck ist 180°.	\circ	\circ
5)	Ein Dreieck kann maximal einen stumpfen Winkel haben.	0	0

Begründungen:

- 1) $2\cdot 90^\circ=180^\circ$, laut Innenwinkelsatz ist die Innenwinkelsumme 180°. Damit müsste der dritte Winkel 0° sein.
- **2)** Winkel kleiner als 90° sind spitze Winkel. Bei einem spitzwinkligen Dreieck müssen alle Winkel spitze Winkel sein, das ist also erfüllt.
- **3)** Überstumpfe Winkel sind größer als 180°, laut Innenwinkelsatz ist die Summe aller 3 Winkel gleich 180°. Damit ergibt sich ein Widerspruch.
- 4) Laut Innenwinkelsatz richtig.
- **5)** Stumpfe Winkel liegen zwischen 90° und 180°. Wenn ein Dreieck zwei stumpfe Winkel hätte wäre die Innenwinkelsumme größer als 180°.
- (4) a) c = 3 cm
 - b) unregelmäßiges Dreieck
 - c) stumpfwinkliges Dreieck
- (5) a) s. Rückseite
 - b) Eindeutig konstruierbare Dreiecke sind: (1); (3); (4); (5)
 - c) (1): SSS
 - (3): WSW
 - (4): SWS
 - (5): SsW
 - d) (2): a + b = 2.5 cm + 2.8 cm = 5.3 cm < 6.0 cm; nicht alle Dreiecksungleichungen sind erfüllt
 - (6): Es sind 2 Winkel und eine Seite gegeben. Somit käme nur der Kongruenzsatz WSW in Frage. Dafür müssten beide gegebenen Winkel an der Seite direkt anliegen. Der Winkel α liegt aber nicht an der Seite a an.