Die allgemeine Form einer quadratischen Funktion

In den letzten Aufgaben haben wir gesehen, dass die Formel zur Berechnung des **Anhalteweges** neben einem **rein-quadratischen** Teil (**Bremsweg** mit $\frac{1}{2a_B} \cdot v^2$) auch einen **linearen** Teil (*Reaktionsweg* mit $t_R \cdot v$) besaß. Werden diese beiden Teile kombiniert, erhalten wir die allgemeine Form einer quadratischen Funktion:

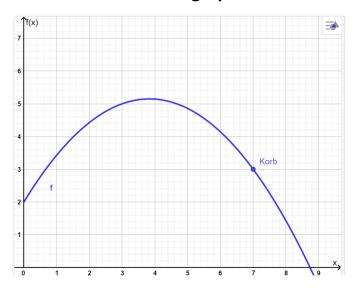
Merke: Die quadratische Funktion

Eine Funktion mit der Funktionsgleichung $f(x) = a \cdot x^2 + b \cdot x + c$, wobei a
eq 0 und $a,b,c \in \mathbb{R}$ ist, wird als **quadratische Funktion** bezeichnet.

Beispiel: Basketball-Wurf

Die folgende quadratische Funktion beschreibt den Wurf eines Basketballs von der Dreier-Linie auf den Korb. Sie ordnet der Weite x in m vom Abwurf die Höhe f(x) des Balls in m zu.

Funktionsgleichung:
$$f(x) = -rac{3}{14} \cdot x^2 + rac{23}{14} \cdot x + 2$$


Funktionsterm:

$$-\frac{3}{14} \cdot x^2 + \frac{23}{14} \cdot x + 2$$

Wertetabelle:

x (in m)	f(x) in m		
0	2		
1	3,43		
2	4,43		
3	5		
7	3		

Funktionsgraph:

Der Graph einer quadratischen Funktion ist eine Parabel.

Seite 1/3 Mathematik

(1) Vervollständige die Tabelle, indem du die entsprechenden Werte aus dem Beispiel "Basketball-Wurf" überträgst.

	allgemein	Basketball-Wurf:
rein-quadratischer Teil	$a\cdot x^2$	
linearer Teil	$b\cdot x$	
konstanter Teil	c	

- ② Betrachte die Funktion mit der Funktionsgleichung $f(x) = (x+3) \cdot (x-2)$.
 - a) Zeige, dass diese Funktion quadratisch ist, indem du sie in der Form $f(x)=a\cdot x^2+b\cdot x+c$ angibst.
 - b) Welche Werte haben die Parameter a,b und c?

Hinweis: Ausmulitplizieren

Situation 1: $a \cdot (b+c) = a \cdot b + a \cdot c$

Situation 2: $(a+b)\cdot(c-d)=a\cdot c-a\cdot d+b\cdot c-b\cdot d$

Mathematik Seite 2/3

Name:	Die quadratische Funktion	17.04.2020

Mathematik Seite 3/3