Übungsaufgaben vor der Klausur

1 Nutze das 3. Keplersche Gesetz und das Gravitationsgesetz, um die Lücken in der Tabelle auszufüllen.

Name	Durchmesser [in km]	große Halbachse a [in m]	Umlaufzeit [in s]	Masse [in kg]	Bahnge- schwindigkeit [in km/s]
Sonne	1.392.00				
Merku r	4.878	57,9 * 10 ⁹		3,30 * 10 ²³	48
Venus	12.104		19,4 * 10 ⁶	4,87 * 10 ²⁴	
Erde	12.756	149,6 10 ⁹	31,5 * 10 ⁶	5,97 + 10 ²⁴	
Mars	6.794	227,9 * 10 ⁹		6,42 * 10 ²³	
Pluto	2.390		78,2 * 10 ⁸	1,3 * 10 ²²	4,7

Einige Himmelskörper unseres Sonnensystems

3. Keplersches Gesetz

Gravitationsgesetz

Zentripetalkraft

$$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$$

$$F_G=Grac{m_1m_2}{r^2}$$

$$G = 6.673 \cdot 10^{-11} rac{m^3}{kg \cdot s^2}$$

$$F_{zp} = m \cdot \omega^2 \cdot r$$

- ② Berechne die Höhe, in der sich ein Satellit um die Erde bewegen muss, damit er an einem Tag genau drei Umläufe schafft.
 - Berechne die Umlaufzeit *T* des Satelliten:
 - Berechne die Winkelgeschwindigkeit des Satelliten:
 - Ermittle den Erdradius aus der Tabelle oben:
 - Setzt F_{zP} gleich F_G:
 - Stelle die Gleichung nach r um und berechne r
 - Ziehe den Radius der Herde von dem Kreisradius der Satellitenbahn ab: