
Niveau 1 Beweis Winkelhalbierende

[¶] Winkelhalbierende

Für Winkel, die höchstens 180° groß sind, gilt:

Wenn ein Punkt P auf der Winkelhalbierenden liegt, so hat er von beiden Schenkeln denselben Abstand.

1 Beweise den Satz für die Winkelhalbierende. Fülle folgenden Lückentext dazu aus, indem du die Wörter einsetzt. Nutze außerdem die Skizze.

90° 1x	Abstände 1x		der Winkelhalbierenden 1x		n 1x	eine Seite 1x		
gleich groß 1x		Kongruenzsatz 1x		rechtwink	rechtwinklige 1x		Schenkeln 1x	
Strecke S	SP 1x	Teildrei	ecken 1x	Viereck 1x	wsw	1x	zwei Winkel 1x	

Wir wissen (Voraussetzung): P liegt auf

Wir wollen zeigen (Behauptung): Die des Punktes P von den beiden

sind gleich

Beweis: Die Winkelhalbierende zerlegt das CPDS in zwei

Teildreiecke APS und BDS.

Es gilt:

1. Die Strecke SP gehört zu beiden und ist somit $lpha_1=lpha_2$

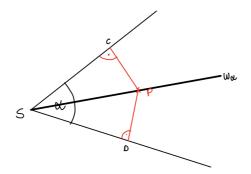
2. Da die die Winkelhalbierende von Alpha ist gilt:

3. Die Winkel bei C und D sind nach Konstruktion groß.

Somit sind und beider Teildreiecke gleich

groß und beiden Dreiecke sind nach dem kongruent

zueinander und es gilt: PC=PD


Mathematik Seite 1/3

Niveau 2 Beweis Winkelhalbierende

Winkelhalbierende

Für Winkel, die höchstens 180° groß sind, gilt:

Wenn ein Punkt P auf der Winkelhalbierenden liegt, so hat er von beiden Schenkeln denselben Abstand.

(1) Sortiere den Beweis in die richtige Reihenfolge. (1-13)

Die Winkel bei C und D sind nach Konstruktion 90° groß.

Die Strecke SP gehört zu beiden Teildreiecken und ist somit gleich groß.

Es gilt:

Wir wollen zeigen (Behauptung):

Beide Dreiecke sind nach dem Kongruenzsatz wow kongruent zueinander.

Wir wissen (Voraussetzung):

Die Winkelhalbierende zerlegt das Viereck CPDS in zwei rechtwinklige Teildrei-

ecke APS und BDS.

Die Abstände des Punktes P von den beiden Schenkeln sind gleich: PC=PD.

Beweis:

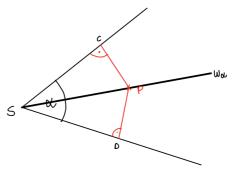
 $\alpha_1 = \alpha_2$

Es gilt: PC=PD

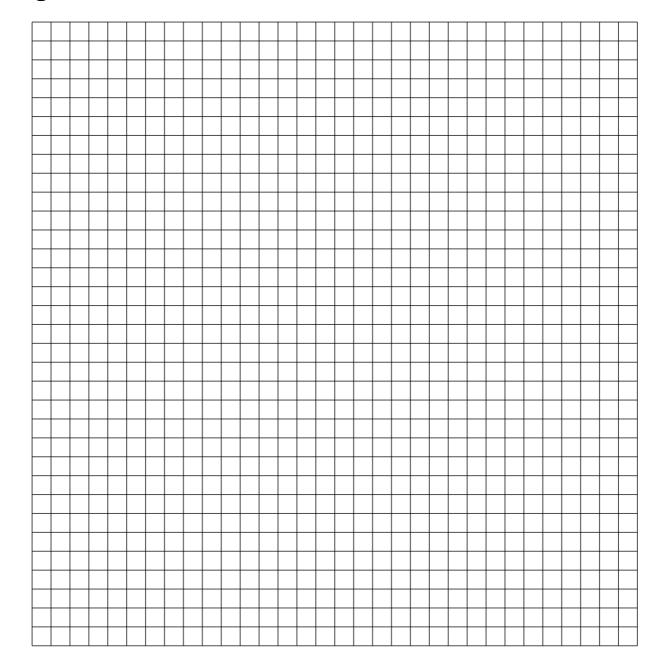
Da SP die Winkelhalbierende von Alpha ist, gilt:

Somit sind zwei Winkel und eine Seite beider Teildreiecke gleich groß.

P liegt auf der Winkelhalbierenden


Seite 2/3 Mathematik

Niveau 3 Beweis Winkelhalbierende


Winkelhalbierende

Für Winkel, die höchstens 180° groß

Wenn ein Punkt P auf der Winkelhalbierenden liegt, so hat er von beiden Seiten denselben Abstand.

1 Beweise den Satz über die Winkelhalbierenden mithilfe der Skizze.

Seite 3/3 Mathematik