Experiment: Ball fallen lassen

Ein Flummi springt bei jedem Aufprall auf 60% der Ursnrungshöhe

Behauptung

- (1) Sie sollen die oben stehende Behauptung überprüfen. Finden Sie sich hierfür immer zu zweit zusammen.
 - Lassen Sie einen Flummi aus 30cm Höhe auf einen Tisch gerade herunterfallen. Messen Sie, wie hoch der Flummi aufspringt. Notieren Sie sich diesen Wert.
 - Lassen Sie den Flummi aus der so eben notierten Höhe herabfallen. Notieren Sie wieder, wie hoch der Flummi nun springt.
 - Wiederholen Sie diese Schritte so oft wie möglich. Irgendwann werden Sie den Unterschied allerdings nicht mehr messen können.
 - Füllen Sie die nebenstehende Tabelle aus! (Im Idealfall wiederholen Sie den Versuch mehrmals, um Messfehler auszuschließen.)
 - Wenn Sie mögen, können Sie auch mit Hilfe eines Zollstocks den Flummi aus einer höheren Höhe fallen lassen. Auf dem Pult liegen entsprechend Zollstöcke für Sie bereit.
 - Können Sie mit Ihren Ergebnissen die Behauptung bestätigen oder widerlegen?
 - Stellen Sie eine neue Behauptung auf!

笊 "Nutzloses Randwissen to-go"

"Flummi" ist die Abkurzung für fliegendes Gummi und bezeichnet einen Gummiball. "Das Wort wurde für die deutsche Synchronisation des Films _Der fliegende Pauker_ ("The Absent-Minded Professor", USA 1961) erfunden.

Höhe	springt bis zurück hoch	Prozent von voriger Höhe
30cm		

: Weiterdenken

Im Physikunterricht lernt man, dass Energie nicht verloren gehen kann. Warum bleibt dann aber ein Flummi irgendwann liegen?

- (2) Jetzt wollen wir Ihren Versuch mathematisch betrachten.
 - Die Ursprungshöhe bezeichnen wir mit a₀.
 - Die weiteren Folgenglieder bezeichnen wir mit a₁, a₂...
 - Stellen Sie die Bildungsvorschrift für diese Zahlenfolge auf! Anders formuliert: Wie kann ich die Höhe nach beliebig vielen Aufhüpfern berechnen? Gesucht ist also eine Beschreibung für a_n=...